
34 The Delphi Magazine Issue 72

Squeeze, Please
This month we look at compression
with the Burrows-Wheeler Transform

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

For the last month I’ve been
rewriting the implementation

of the Deflate compression algo-
rithm we had in Abbrevia, ready for
version 3 (Deflate is the compres-
sion algorithm used in zip files).
There were three main reasons for
doing this: the current code was
a maintenance nightmare, we
wanted to add support for
Deflate64, PKWare’s new compres-
sion algorithm, and I wanted to be
able to tune the implementation to
produce faster and better com-
pression. I succeeded: the code is
now easier to understand, it’s liber-
ally peppered with assertions and
logging statements to make debug-
ging and maintenance easier, and
(after many sessions with Sleuth
QA Suite) it’s faster.

But that’s not the point of this
article. The big problem with the
Deflate algorithm is that, although
it is very particular in its definition
of the final format of the com-
pressed data, how you get to that
point is left as an interesting exer-
cise for the reader. And what an
interesting exercise it is (can you
spot the cynical tone?). Back in
April and May 1999, I described
Huffman encoding and LZ77 com-
pression. Well, Deflate is essen-
tially LZ77 compression into literal
and length/distance tokens fol-
lowed by encoding of those tokens
using Huffman trees (and then
Huffman encoding of those
Huffman trees, but I’m sure you get
the drift). Although that sounds
pretty cut and dried, in reality find-
ing the best encoding for a given
uncompressed stream has been
shown to be NP-complete, that is,
of the same level of difficulty as the
Traveling Salesman problem. I
spent a lot of time tweaking here
and tweaking there, rewriting this
and that, trying to get the
compression ratio down.

Over all this time, I was wishing
for a better-defined algorithm for
compression that could produce

compression ratios as good as
Deflate can produce. I then remem-
bered something I’d read about in
the comp.alt.compression Usenet
newsgroup a while back: the
Burrows-Wheeler block transform.
I searched the internet for papers
on it and read quite a bit, and came
to the conclusion that, although it
wouldn’t help for Abbrevia’s
Deflate implementation (it’s a dif-
ferent type of compression alto-
gether), it would make a good
article for Algorithms Alfresco,
especially since the transform is
only part of the total compression
method and other algorithms are
required.

The Burrows-Wheeler Trans-
form was first thought of in 1983
but was only described in full in
May 1994 in a paper called A
Block-Sorting Lossless Data Com-
pression Algorithm by M Burrows
and DJ Wheeler, published by
Digital’s System Research Center.
From the title we can glean a
couple of tidbits of information
straight away: it operates on
sorted blocks and it’s lossless.
Delving into the paper we learn
that the transform is only part of
the overall compression algo-
rithm, but that it is the most
interesting part.

Quick Recap
Before we get ahead of ourselves,
let’s discourse a little on compres-
sion to re-familiarize ourselves. As
I stated above the zip-based com-
pression method starts off with
LZ77 compression. This is a
tokenizing type of compression: it
takes the input uncompressed
stream of data and converts it into
a stream of tokens, or symbols.
The tokens consist of literals
(these are uncompressed and
untouched single bytes from the
input stream) and length/distance
pairs (an indication of a repeat of
some data we’ve seen before). So,
for example, the phrase:

a cat is a cat is a cat

would be converted by the LZ77
algorithm to the sequence:

a cat is <14,9>

where the <14,9> token should be
read as ‘copy the 14 bytes of data
from 9 bytes back’.

May 1999’s Algorithms Alfresco
has details on how to efficiently
calculate the length/distance
tokens and a simple method to
encode them into bytes.

The Burrows-Wheeler
Transform
The point to recognize here is that
LZ77 compression works by find-
ing sequences of bytes that are
repeated. It employs the general
assumption that the data we com-
press tends to be locally similar,
or, to put it another way, when
data repeats, it’ll generally repeat
within a smallish area of the over-
all stream. The Burrows-Wheeler
Transform, on the other hand, is
an algorithm that rearranges a
block of data so that similar data
sequences are physically brought
together (to increase the local sim-
ilarity) and hence can be efficiently
compressed.

Let’s take a look at how it works.
Suppose we have the small block
of data (11 bytes):

la habanera

We now form a matrix with all the
cyclic rotations of that string (I’ve
replaced the space with an under-
score so that you can more easily
see what’s going on). By a rotation

August 2001 The Delphi Magazine 35

I mean taking the first character of
a particular row and putting it at
the back to form the next row:

la_habanera
a_habaneral
_habanerala
habanerala_
abanerala_h
banerala_ha
anerala_hab
nerala_haba
erala_haban
rala_habane
ala_habaner

The next step is to sort the rows in
this matrix. We just use a standard
lexicographic order (in other
words, sorting on the binary value
of each character).

_habanerala
a_habaneral
abanerala_h
ala_habaner
anerala_hab
banerala_ha
erala_haban
habanerala_
la_habanera
nerala_haba
rala_habane

During the sorting process we keep
track of the original string and save
its index in the sorted matrix. In
this case, the index is 9: the original
string occurs at row 9 in this sorted
matrix. (For the purposes of illus-
tration we’ll count from 1, although
in practice we’ll be counting from
0.)

We now take the last character of
each row and form a string:

alhrban_aae

This string, together with the
index of the original string in the
sorted matrix, is the output of
the Burrows-Wheeler Transform.
Notice that the output string is
merely an anagram of the original
one: all the same characters are
there, just rearranged in a different
way. But where’s the compression,
I can hear you say. I just imple-
mented some mumbo jumbo on a
string, got back the original string
rearranged, together with a

numeric value. I’ve actually
increased the size of the block, not
compressed it!

Quite right, and we’ll get back to
this issue in a moment. For now,
let’s show how the original matrix
can be regenerated from this
output, and hence how to get the
original string back.

Undoing The Transform
The decoder gets the string of
characters formed by the trans-
form operation. These characters
form the last characters of each
row of the sorted matrix. Because
of the way the original matrix was
formed, the characters in this
string are also all of the characters
in the original string, just rear-
ranged in some bizarre cannot-be-
easily-deduced fashion.

The first thing to do is sort the
characters in the passed string. If
you look back at the matrix, you
can see that the result will be the
first column of the matrix:

_.........a
a.........l
a.........h
a.........r
a.........b
b.........a
e.........n
h........._
l.........a
n.........a
r.........e

Rotate the rows in the matrix right
one place. Each row in this matrix
will map onto a row in the original
sorted matrix.

a_.........
la.........
ha.........
ra.........
ba.........
ab.........
ne.........
_h.........
al.........
an.........
er.........

From this operation we can imme-
diately ascertain from the first row
that a is followed by a blank, from
the second, l is followed by a, then

h is followed by a, etc. The prob-
lem is that we get four different
possibilities for the letter follow-
ing an a: a blank, a b, an l, or an n. In
which order should we use them?

Notice that this latest operation
(moving the last character to the
front) will have ordered the rows
according to the second charac-
ter. If we look at all the rows start-
ing with an a in the latter matrix,
they will be in sorted order (this is
obvious: they all start with a and
are sorted from the second charac-
ter onwards). The rows in the origi-
nal sorted matrix that started with
a appear in the same order as
those in this incomplete matrix.
We can therefore easily devise an
array of indexes that describe how
to map a row of the original sorted
matrix (here shown by the first
incomplete matrix) onto this last
rotated incomplete matrix. Row 1
is mapped onto row 8, row 2 onto
row 1, 3 onto 6, 4 onto 9, 5 onto 10, 6
onto 5, and so on. The full array is
this:

8, 1, 6, 9, 10, 5, 11, 3, 2, 7, 4

This array can now be used to gen-
erate the original string. From the
output of the Burrows-Wheeler
Transform, we know the original
string appeared at row 9. Using the
9th element of the decoding array,
the next character is the start of
row 2, a. From the 2nd element we
go to row 1, the blank. Using ele-
ment 1 we go to row 8, h. Element 8
then says go to row 3, a, Element 3
points to row 6, b. And so on, until
we get the original string, la
habanera.

At the end of this first section,
we can use the Burrows-Wheeler
Transform to take a string, convert
it by a strict algorithm into an ana-
gram and an index value, from
which we can reconstruct the
original string.

This all looks very bizarre to say
the least, and seems to be more of
a party trick than a proper com-
pression algorithm (and, come on,
where is the compression
anyway?). Hang on a moment,
though. Figure 1 shows part of the
sorted matrix obtained from
applying the Burrows-Wheeler

36 The Delphi Magazine Issue 72

Transform to the first paragraph of
this article. You can see that the
last characters of each row have an
awful lot of repetition: t followed by
t followed by t. Even without think-
ing too hard about it, you can see
that we could use a type of
run-length encoding on the string
formed from the last characters in
order to compress the string.

The Move-To-Front Algorithm
However, we shall do a little better
than this with an algorithm that
was invented prior to the Burrows-
Wheeler Transform, but seems to
have been created just for it. The
algorithm I’m talking about is
the Move-To-Front algorithm, first
described by Jon Bentley et al in
A locally adaptive data compression
algorithm, published in CACM,
April 1986.

This algorithm is simple to
describe and implement. Prepare a
256-element encoding array con-
taining all the character values, so
that element 0 will contain #0, ele-
ment 1 #1, and so on. To encode a
character using the Move-To-Front
algorithm you find the character in
the encoding array, output its posi-
tion as a code, and then move the
character to the front of the array,
pushing all the others along by
one.

What this does is to make sure
that the characters that are used
the most often appear in the front
of the array. The codes emitted by
the algorithm, together known as a
position vector, will therefore tend

to be the low integers. Looking at
Figure 1, you can mentally calcu-
late the codes for this section
yourself:

x, 0, 0, 0, y, 1, 0, 0, 0, 0,
0, 0, z, 1, 0, 0, 0

where x, y, and z are position
values that are dependent on the
state of the lookup array at the
time. In other words, we find the
first t in the encoding array, output
its position x, move the t to the
front of the array. The next charac-
ter is also a t. Its position is 0 (we
just put it there, remember). The
next character is also a t. It’s posi-
tion is again 0. And so on, so forth.

The decoder is just as simple.
Prepare a 256-element decoding
array containing all the character
values, so that element 0 will con-
tain #0, element 1 #1, and so on,
just like we did when encoding. For
each byte read, it uses the byte as
an index into the decoder array,
outputs the character there, and
then moves the character to the
front of the decoder array.

You can see from this simple
example that the codes we output
from the Move-To-Front encoder
have lots of zeros and ones. This
situation is where a Huffman
encoder will shine: the more repe-
tition a token has, the shorter the
Huffman tree that will encode it.
You’ll notice that we’ll get better
repetition by performing Move-To-
Front than just using the charac-
ters themselves. Also, when we’re
compressing text streams, we’ll
find that the lower-case characters
will tend to be at the front of
the encoding array leading us to

imagine that using this method to
compress text will result in better
compression ratios than we’d
maybe expect.

The next stage, as I’ve hinted at,
is to take the codes emitted by the
Move-To-Front algorithm and
compress them with a Huffman
tree.

Implementing The Transform
After this blast of description, let’s
now look at coding it all. There are
several distinct steps here. The
first is to decide on the block size
and then divide up the input
stream into blocks of that size. The
second is to (somehow) generate
all the cyclic rotations of the block,
sort them, and then peel off the
last characters (this will be a block
of data the same size as the origi-
nal, and will be an anagram of it).
This, together with the index value
that describes the position of the
original data in the matrix, is the
output of the Burrows-Wheeler
Transform. The third step is to
take this output and encode it
using the Move-To-Front (MTF)
algorithm. Finally, in the last step,
we take the output from the MTF
algorithm and encode it using a
Huffman tree.

For decompression, we have to
decode the compressed stream
using the Huffman tree into a posi-
tion vector, decode this vector
using the reverse of the Move-To-
Front algorithm to give us the
array of final characters, generate
the array of initial characters,
calculate the transformation
vector, and then build the original
block again.

h assertions and...peppered wit
h I've been rewr...he last mont
h QA Suite, it's...s with Sleut
h Sleuth QA Suit...sessions wit
had in Abbrevia,...lgorithm we
he code is now e...succeeded: t
he compression a...Deflate is t
he current code ...oing this: t
he Deflate compr...ntation of t
he implementatio... rewriting t
he implementatio...le to tune t
he last month I'...faster.For t
here were three ...ip files.) T
his: the current... for doing t
hm used in Zip f...sion algorit
hm we had in Abb...sion algorit
hm, and I wanted...sion algorit

➤ Figure 1: Part of a
Burrows-Wheeler
sorted matrix.

➤ Figure 2: Generating
the pointers for a
Burrows-Wheeler matrix.

August 2001 The Delphi Magazine 37

There’s a lot to do, certainly, but
at least it’s in nice manageable
chunks. We can write one part, test
it and move onto the next.

The first step, then, is dividing
up the uncompressed stream into
equal-sized blocks. Easy enough:
we’ll use a TStream descendant and
make the block size 16,384 bytes.
The final block of the stream will be
smaller in general, so we shall need
to devise a method for passing the
size of the block along for the
decompressor, otherwise it won’t
know when to stop.

The next step is possibly the
hardest. Conceptually, we have to
create 16,384 rotations of 16,384
bytes, sort them, and then extract
the final letters as another block. If
we were to create the entire matrix
it would be 256Mb in size: doable,
just, but it smacks of the sledge-
hammer approach. Also the sort-
ing would be horrendously slow,
since we’d be swapping items that
are 16Kb in size all the time.

No, it’s better to think back-
wards from the sorting side of
things. For efficient sorting we’d
like to use a quicksort. We don’t
want to swap 16Kb items in doing
so, so it makes sense to use an indi-
rect quicksort: sorting pointers to
the items we want sorted (an item
being a rotation of the original
block). That way, the items don’t
move, only the pointers get
swapped. We could treat the block
as a circular queue of characters,
making the pointers to the rota-
tions merely pointers to the indi-
vidual characters, but that makes
the comparisons difficult since we
have to worry about wrapping

around to the start of the block
when we reach the end.

It seems that whenever I want to
use a circular queue, I fake it by
using a sliding window instead. I
just hate having to worry about
that wrap problem. In fact, this
kind of scheme will help consider-
ably. Take the block, double its
size, copy the data from the first
half over to the second half to
duplicate the data. All the rota-
tions can now be defined (without
any wrapping problems) by point-
ers to the individual characters in
the first half. I’ve illustrated this
technique in Figure 2 by showing
the different ‘rotations’ for la
habanera.

We can now code up the first
part of the Burrows-Wheeler com-
pression method: the transform.
To help, I grabbed the optimized
quicksort from my book (you do
have a copy, don’t you? �) and
modified it for my immediate
needs. There was a minor problem,
however: I needed a comparison
method that would compare two
blocks of bytes, up to some limit,
and return less than, greater than,

or equal. For some reason, I didn’t
have such a beast in my code
library so I had to write one. Listing
1 shows this comparison routine:
supply it with two pointers to
blocks of data and it will return a
negative number if the data in the
first block is less than that in the
second block, 0 if they’re equal, or
a positive number otherwise.

Listing 2 shows the Burrows-
Wheeler Transform. It takes two
pointers: the first is the block to
which the transform is to be
applied (this will eventually be
supplied from a TStream descen-
dant), the second is the block to
which we should write the final
characters. There’s an integer
parameter to define how big the
blocks are, and the routine returns
the index of the original block in
the sorted ‘matrix’. Since the
quicksort makes no attempt to
store the position of the original
block in the sorted pointer array,
we need to find it. Recognizing that
the pointer array is sorted, we can
considerably simplify the process
of finding the original block by
using a binary search.

function CompareBlocks(aData1, aData2 : pointer; aSize : integer) : integer;
var
Data1 : PChar;
Data2 : PChar;
i : integer;

begin
Data1 := aData1;
Data2 := aData2;
i := aSize;
while (i > 0) and (Data1^ = Data2^) do begin
dec(i);
inc(Data1);
inc(Data2);

end;
if (i = 0) then
Result := 0

else if (Data1^ < Data2^) then
Result := -1

else
Result := +1;

end;

➤ Listing 1: Comparing two blocks.

➤ Listing 2: The
Burrows-Wheeler Transform.

function ApplyBWTransform(aInBlock : PChar;
aOutBlock : PChar; aSize : integer) : integer;

var
i : integer;
DataBlock : PChar;
PtrList : PPointerList;
TempPtr : PChar;

begin
{prepare for the try..finally}
DataBlock := nil;
PtrList := nil;
try
{allocate the data block and fill it with
two copies of the input block}
GetMem(DataBlock, aSize * 2);
Move(aInBlock^, DataBlock^, aSize);
Move(aInBlock^, DataBlock[aSize], aSize);
{allocate the list of pointers and set the elements
to the individual characters in the data block:

these will be our rotations of the block}
GetMem(PtrList, aSize * sizeof(pointer));
TempPtr := DataBlock;
for i := 0 to pred(aSize) do begin
PtrList^[i] := TempPtr;
inc(TempPtr);

end;
{sort the pointer list}
Quicksort(PtrList, 0, pred(aSize), aSize);
{calculate the output block}
for i := 0 to pred(aSize) do
aOutBlock[i] := PChar(PtrList^[i])[pred(aSize)];

{find the original block in the list}
Result := BinarySearch(PtrList, aSize, DataBlock);

finally
FreeMem(DataBlock);
FreeMem(PtrList);

end;
end;

38 The Delphi Magazine Issue 72

Implementing
The Compression
Now that we have the final charac-
ter array, we need to encode it into
a position vector by using the
Move-To-Front algorithm. This
doesn’t take too much to imple-
ment, and Listing 3 shows the
result. What’s happening here is
that we take the input block of final
characters and then apply the MTF
algorithm to produce a vector of
position values. Because of the
way the algorithm is structured,
these position values are numbers
from 0 to 255, and therefore can be
stored in a byte. The MTF algo-
rithm therefore encodes a block of
bytes as another, equally sized,
block of bytes and that’s the way
the routine is implemented.

Next is the Huffman encoding.
This time I’ll reuse the Huffman

compression code I’d improved
based on a reader’s email in Algo-
rithms Alfresco from August 2000
(pretty much the same code
appears in the book as well). I’ve
tweaked it a bit so that it works on a
fixed size block, encoding the tree
and the data to a bitstream. I won’t
reprint the Huffman tree code
here: it’s on this month’s disk, after
all, and to explain what’s going on
in it would require me to repeat an
entire article.

Of course, now that we’ve seen
the individual pieces, we have to
join them up into a routine that
takes an input stream and then
compresses the data into another.
The format of the output stream
will consist of a small 4-byte signa-
ture to identify the stream as one of
ours, a longint for the size of the
original stream, a word value for the
size of the block used, another word
for the index of the original block
in the sorted matrix after the

Burrows-Wheeler Transform, and
then the compressed data itself.
Listing 4 shows this wrapping
code.

Implementing
The Decompression
We are not done, of course. For our
new compression code to have any
usefulness at all we shall need to
write a decompressor, otherwise
it’ll merely be a very long-winded
one-way hash algorithm. So let’s
retrace our steps.

The first thing is to write the
decompression wrapper. We know
enough about the format of the
input compressed stream, the way
the various routines on the com-
pression side worked, that we can
write simple stubs for the Huffman
decoder, the Move-To-Front
decoder and the Burrows-Wheeler
untransformer (have I just coined
a new word?). Listing 5 shows the
decompressor wrapping code. It
firstly checks that the stream is
one of ours by verifying the signa-
ture. It can then, with a certain
amount of confidence, get the orig-
inal size of the stream, the block
size and the index value. It then
launches into a loop where it
decompresses a block, decodes it
using the reverse MTF algorithm,
and then applies the Burrows-
Wheeler untransformer. The loop
stops, of course, once all the data
has been decompressed.

Like I did with the Huffman
encoder, I won’t go into details

procedure MoveToFrontEncode(aInBlock : PChar; aOutBlock : PChar; aSize :
integer);

var
i, j, k : integer;
Encoder : array [0..255] of char;

begin
{initialize the encoder array}
for i := 0 to 255 do
Encoder[i] := char(i);

{for all the characters in the input block...}
for i := 0 to pred(aSize) do begin
{find it in the encoder array}
for j := 0 to 255 do
if (Encoder[j] = aInBlock^) then
Break;

{output the position}
aOutBlock^ := char(j);
{move the character to the front of the encoder array}
if (j > 0) then
for k := j downto 1 do
Encoder[k] := Encoder[k-1];

Encoder[0] := aInBlock^;
{advance the input and output pointers}
inc(aInBlock);
inc(aOutBlock);

end;
end;

procedure AABWTCompress(aInStream, aOutStream : TStream);
const
BufSize = 16*1024;

var
InBuf : PChar;
BWTBuf : PChar;
MTFBuf : PChar;
BytesRead : integer;
LongBuf : longint;
WordBuf : word;
Index : integer;

begin
{prepare for the try..finally}
InBuf := nil;
BWTBuf := nil;
MTFBuf := nil;
try
{allocate the buffers}
GetMem(InBuf, BufSize);
GetMem(BWTBuf, BufSize);
GetMem(MTFBuf, BufSize);
{write the header information to the output stream}
LongBuf := BWTSignature;
aOutStream.WriteBuffer(LongBuf, sizeof(LongBuf));
LongBuf := aInStream.Size;
aOutStream.WriteBuffer(LongBuf, sizeof(LongBuf));

WordBuf := BufSize;
aOutStream.WriteBuffer(WordBuf, sizeof(WordBuf));
{read the first buffer}
BytesRead := aInStream.Read(InBuf^, BufSize);
{while there is data to compress...}
while (BytesRead <> 0) do begin
{apply the BWT transform to this buffer}
Index := ApplyBWTransform(InBuf, BWTBuf, BytesRead);
{write the index to the output stream}
WordBuf := Index;
aOutStream.WriteBuffer(WordBuf, sizeof(WordBuf));
{encode the BWT buffer with the Move-To-Front
algorithm}

MoveToFrontEncode(BWTBuf, MTFBuf, BytesRead);
{compress the MTF buffer with Huffman}
HuffmanCompressBlock(MTFBuf^, BytesRead, aOutStream);
{read the next bufferful}
BytesRead := aInStream.Read(InBuf^, BufSize);

end;
finally
FreeMem(MTFBuf);
FreeMem(BWTBuf);
FreeMem(InBuf);

end;
end;

➤ Listing 3: The Move-To-Front
algorithm.

➤ Listing 4: The high-level
compression routine.

40 The Delphi Magazine Issue 72

about the Huffman decoder. You
can easily check back with the rele-
vant Algorithms Alfresco articles
(get the back issues CD-ROM!) or
just as easily buy my book. This
month’s disk has the relevant
code, of course.

The implementation of the
reverse of the Move-To-Front algo-
rithm should hold no real sur-
prises. I wrote Listing 6 very
quickly by taking Listing 3 and
rearranging the code a bit, not
neglecting to change the word
‘Encoder’ to ‘Decoder’, of course.

Implementing
The Reverse BWT
And, finally, we come to the
reverse Burrows-Wheeler Trans-
form. To remind you, we get the
array of final characters and the
index value of the original block in
the sorted matrix and we have to
regenerate that original block.

The first step is to sort the block
of final characters to create the
block of initial characters. What an
ideal application of distribution
sort from last month’s Algorithms
Alfresco. (You see: there is some
method to my madness in choos-
ing topics for my articles! And all
along Our Esteemed Editor was
under the impression I was jabbing
the proverbial pin into Knuth’s
oeuvre on a monthly basis.) In fact,
we can make a simple optimization
of a distribution sort where the

data for each key is the key and
only the key. If you recall, distribu-
tion sort on bytes requires us to
count the occurrence of each byte

key value, calculate the cumula-
tive numbers from that, and then
copy the items over to an auxiliary
array using the cumulative

procedure AABWTUncompress(aInStream, aOutStream : TStream);
var
OutBuf : PChar;
BWTBuf : PChar;
MTFBuf : PChar;
BytesRead : integer;
LongBuf : longint;
WordBuf : word;
Index : integer;
Size : longint;
BufSize : integer;
BytesToRead : integer;

begin
{prepare for the try..finally}
OutBuf := nil;
BWTBuf := nil;
MTFBuf := nil;
try
{read the header information from the input stream}
BytesRead := aInStream.Read(LongBuf, sizeof(LongBuf));
if (BytesRead <> sizeof(LongBuf)) or

(LongBuf <> BWTSignature) then
raise Exception.Create('AABWTUncompress: input ‘+
‘stream is not a BWT compressed stream');

aInStream.ReadBuffer(Size, sizeof(Size));
aInStream.ReadBuffer(WordBuf, sizeof(WordBuf));
BufSize := WordBuf;
{allocate the buffers}
GetMem(OutBuf, BufSize);

GetMem(BWTBuf, BufSize);
GetMem(MTFBuf, BufSize);
{while there is still data to uncompress...}
while (Size <> 0) do begin
{read the index for the next buffer}
aInStream.ReadBuffer(WordBuf, sizeof(WordBuf));
Index := WordBuf;
{read and decompress the next block}
BytesToRead := Size;
if (BytesToRead > BufSize) then
BytesToRead := BufSize;

HuffmanDecompressBlock(aInStream, MTFBuf^,
BytesToRead);

{decode using the Move-To-Front algorithm}
MoveToFrontDecode(MTFBuf, BWTBuf, BytesToRead);
{perform the reverse BWT transform}
UnapplyBWTransform(BWTBuf, OutBuf, BytesToRead,
Index);

{write out the decompressed buffer}
aOutStream.WriteBuffer(OutBuf^, BytesTORead);
{update the loop variable}
dec(Size, BytesTORead);

end;
finally
FreeMem(MTFBuf);
FreeMem(BWTBuf);
FreeMem(OutBuf);

end;
end;

➤ Listing 5: The high-level
decompression routine. procedure MoveToFrontDecode(aInBlock : PChar; aOutBlock : PChar; aSize :

integer);
var
i, j, k : integer;
Decoder : array [0..255] of char;

begin
{initialize the encoder array}
for i := 0 to 255 do
Decoder[i] := char(i);

{for all the bytes in the input block...}
for i := 0 to pred(aSize) do begin
{output the character at that position in the decoder array}
j := ord(aInBlock^);
aOUtBlock^ := Decoder[j];
{move the character to the front of the decoder array}
if (j > 0) then
for k := j downto 1 do
Decoder[k] := Decoder[k-1];

Decoder[0] := aOutBlock^;
{advance the input and output pointers}
inc(aInBlock);
inc(aOutBlock);

end;
end;

procedure DistSort(aInBlock, aOutBlock : PChar; aSize : integer;
aStartPos : PIntArray);

var
i, j : integer;
Counter : array [0..255] of longint;
CumulCount : integer;

begin
{clear the counter array}
FillChar(Counter, sizeof(Counter), 0);
{calculate the distribution of each key}
for i := 0 to pred(aSize) do begin
inc(Counter[ord(aInBlock^)]);
inc(aInBlock);

end;
{copy over the byte values to the auxiliary list in sorted order,
generating the start positions for each character as we go}
CumulCount := 0;
for i := 0 to 255 do begin
aStartPos^[i] := CumulCount;
inc(CumulCount, Counter[i]);
for j := 0 to pred(Counter[i]) do begin
aOutBlock^ := char(i);
inc(aOutBlock);

end;
end;

end;

➤ Listing 6: The reverse Move-To-Front algorithm.

➤ Listing 7: Distribution sorting a set of bytes.

August 2001 The Delphi Magazine 41

numbers and the items’ keys. Well,
if there are no items to copy and
the item is the key, we can easily
sort by regenerating the keys
themselves in the destination
array using the counts. If there are
42 zeros, generate 42 zeros in the
destination array and then move
onto the ones. It’s like we are
cloning the keys.

Listing 7 shows this distribution
sort implementation. Because the
reverse BWT algorithm is going to
require an array of start positions
for each character, I’ve added code
to maintain this list, but this extra
code does not obfuscate the
simplified distribution sort code
too much.

Now we get to the generation of
the transformation vector. For
each character in the unsorted
block, let’s say that this is indexed
by i, we find the next equal charac-
ter in the sorted block (this is
where the array of start positions
comes in handy), using index j.
This simple step gives us that the
jth entry in the transformation
vector is equal to i. We iterate over
the entire input block, building up
the transformation vector.

Once we have the transforma-
tion vector, we can easily regener-
ate the original block starting off
with the passed index. The first
character is the entry in the sorted
block given by the passed index.
We then calculate the next index
from the transformation vector
and hence the next character. We
continue like this until the entire

original block has been calculated.
Listing 8 shows the entire routine,
which seems to take up less room
than this explanation.

Conclusions
And so we reach the end of this
article. Unfortunately, my tests
with this implementation of the
Burrows-Wheeler compression
method show that we are not get-
ting as good a compression ratio
as Deflate does in zip files. This
is entirely due to the Huffman
encoder we are using (every block
we compress needs a separate
Huffman tree and this tree must be
sent with the compressed data).
Possibly an adaptive Huffman
encoder, or another adaptive
algorithm altogether, would be the
way to go, since the tree does not
have to be sent with an adaptive

algorithm, but that’s the stuff of
another article.

On the plus side, the implemen-
tation does produce much smaller
compressed files than plain
Huffman on its own does. This is
due to the effect of both the
Burrows-Wheeler Transform and
the Move-To-Front algorithm
producing a very compressible
intermediary stage.

Julian Bucknall can be reached at
julianb@turbopower.com

The code that accompanies this
article is freeware and can be used
as-is in your own applications.
© Julian M Bucknall, 2001

procedure UnapplyBWTransform(aInBlock : PChar; aOutBlock :
PChar; aSize : integer; aIndex : integer);
var
i, j : integer;
FirstCol : PChar;
Temp : PChar;
TransVector : PIntArray;
StartPos : PIntArray;

begin
{prepare for the try..finally}
FirstCol := nil;
TransVector := nil;
StartPos := nil;
try
{allocate the first column buffer and the
transformation vector}
GetMem(FirstCol, aSize);
GetMem(TransVector, aSize * sizeof(integer));
GetMem(StartPos, 256 * sizeof(integer));
{sort the input block using distribution sort}
DistSort(aInBlock, FirstCol, aSize, StartPos);
{for each character in the unsorted block...}
Temp := aInBlock;
for i := 0 to pred(aSize) do begin

{find the next occurrence of this character in
the sorted block}
j := StartPos[ord(Temp^)];
inc(StartPos[ord(Temp^)]);
{set the entry in the transformation vector}
TransVector[j] := i;
{advance to the next character in the unsorted block}
inc(Temp);

end;
{we now have the transformation vector, so recreate
the original data starting at the passed in index}
j := aIndex;
Temp := aOutBlock;
for i := 0 to pred(aSize) do begin
Temp^ := FirstCol[j];
j := TransVector[j];
inc(Temp);

end;
finally
FreeMem(StartPos);
FreeMem(TransVector);
FreeMem(FirstCol);

end;
end;

➤ Listing 8: The reverse
Burrows-Wheeler Transform.

	Quick Recap
	The Burrows-Wheeler Transform
	Undoing The Transform
	The Move-To-Front Algorithm
	Implementing The Transform
	Implementing The Compression
	Implementing The Decompression
	Implementing The Reverse BWT
	Conclusions

